enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square wave - Wikipedia

    en.wikipedia.org/wiki/Square_wave

    The ideal square wave contains only components of odd-integer harmonic frequencies (of the form 2π(2k − 1)f). A curiosity of the convergence of the Fourier series representation of the square wave is the Gibbs phenomenon. Ringing artifacts in non-ideal square waves can be shown to be related to this phenomenon.

  3. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A square wave (represented as the blue dot) is approximated by its sixth partial sum (represented as the purple dot), formed by summing the first six terms (represented as arrows) of the square wave's Fourier series. Each arrow starts at the vertical sum of all the arrows to its left (i.e. the previous partial sum).

  4. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Inspired by correspondence in Nature between Michelson and A. E. H. Love about the convergence of the Fourier series of the square wave function, J. Willard Gibbs published a note in 1898 pointing out the important distinction between the limit of the graphs of the partial sums of the Fourier series of a sawtooth wave and the graph of the limit ...

  5. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    Historians are divided as to how much to credit Lagrange and others for the development of Fourier theory: Daniel Bernoulli and Leonhard Euler had introduced trigonometric representations of functions, and Lagrange had given the Fourier series solution to the wave equation, so Fourier's contribution was mainly the bold claim that an arbitrary ...

  6. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  7. Parseval's identity - Wikipedia

    en.wikipedia.org/wiki/Parseval's_identity

    In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. The identity asserts the equality of the energy of a periodic signal (given as the integral of the squared amplitude of the signal) and the energy of its frequency domain representation (given as the sum of squares of the amplitudes).

  8. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    When a function such as a square wave is represented by a summation of terms, for example, a Fourier series or an expansion in orthogonal polynomials, the approximation of the function by a truncated number of terms in the series can exhibit overshoot, undershoot and ringing. The more terms retained in the series, the less pronounced the ...

  9. Generalized Fourier series - Wikipedia

    en.wikipedia.org/wiki/Generalized_Fourier_series

    A generalized Fourier series is the expansion of a square integrable function into a sum of square integrable orthogonal basis functions. The standard Fourier series uses an orthonormal basis of trigonometric functions , and the series expansion is applied to periodic functions.