enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square wave - Wikipedia

    en.wikipedia.org/wiki/Square_wave

    (Odd) harmonics of a 1000 Hz square wave Graph showing the first 3 terms of the Fourier series of a square wave Using Fourier expansion with cycle frequency f over time t , an ideal square wave with an amplitude of 1 can be represented as an infinite sum of sinusoidal waves: x ( t ) = 4 π ∑ k = 1 ∞ sin ⁡ ( 2 π ( 2 k − 1 ) f t ) 2 k ...

  3. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A square wave (represented as the blue dot) is approximated by its sixth partial sum (represented as the purple dot), formed by summing the first six terms (represented as arrows) of the square wave's Fourier series. Each arrow starts at the vertical sum of all the arrows to its left (i.e. the previous partial sum).

  4. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Inspired by correspondence in Nature between Michelson and A. E. H. Love about the convergence of the Fourier series of the square wave function, J. Willard Gibbs published a note in 1898 pointing out the important distinction between the limit of the graphs of the partial sums of the Fourier series of a sawtooth wave and the graph of the limit ...

  5. Generalized Fourier series - Wikipedia

    en.wikipedia.org/wiki/Generalized_Fourier_series

    A generalized Fourier series is the expansion of a square integrable function into a sum of square integrable orthogonal basis functions. The standard Fourier series uses an orthonormal basis of trigonometric functions , and the series expansion is applied to periodic functions.

  6. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    For example, JPEG compression uses a variant of the Fourier transformation (discrete cosine transform) of small square pieces of a digital image. The Fourier components of each square are rounded to lower arithmetic precision, and weak components are eliminated, so that the remaining components can be stored very compactly. In image ...

  7. Trigonometric series - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_series

    The Fourier series for the identity function suffers from the Gibbs phenomenon near the ends of the periodic interval. Every Fourier series gives an example of a trigonometric series. Let the function () = on [,] be extended periodically (see sawtooth wave). Then its Fourier coefficients are:

  8. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  9. Parseval's identity - Wikipedia

    en.wikipedia.org/wiki/Parseval's_identity

    In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. The identity asserts the equality of the energy of a periodic signal (given as the integral of the squared amplitude of the signal) and the energy of its frequency domain representation (given as the sum of squares of the amplitudes).