Search results
Results from the WOW.Com Content Network
This sequence of numbers of parents is the Fibonacci sequence. The number of ancestors at each level, F n, is the number of female ancestors, which is F n−1, plus the number of male ancestors, which is F n−2. [90] [91] This is under the unrealistic assumption that the ancestors at each level are otherwise unrelated.
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377. [34] [35] Fibonacci did not ...
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .
This page was last edited on 14 September 2019, at 05:01 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Although the resulting Fibonacci sequence dates back long before Leonardo, [9] its inclusion in his book is why the sequence is named after him today. The fourth section derives approximations, both numerical and geometrical, of irrational numbers such as square roots. [10] The book also includes proofs in Euclidean geometry. [11]
(the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description (sequence A000045 in the OEIS). The sequence 0, 3, 8, 15, ... is formed according to the formula n 2 − 1 for the n th term: an explicit definition.