enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    It is a generalisation of the least mean squares algorithm in the linear perceptron and the Delta Learning Rule. It implements gradient descent search through the space possible network weights, iteratively reducing the error, between the target values and the network outputs.

  3. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation ... gradient descent tells us that our change for each weight should be proportional to the gradient

  4. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    The model (e.g. a naive Bayes classifier) is trained on the training data set using a supervised learning method, for example using optimization methods such as gradient descent or stochastic gradient descent. In practice, the training data set often consists of pairs of an input vector (or scalar) and the corresponding output vector (or scalar ...

  6. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The first multilayer perceptron (MLP) with more than one layer trained by stochastic gradient descent [23] was published in 1967 by Shun'ichi Amari. [29] The MLP had 5 layers, with 2 learnable layers, and it learned to classify patterns not linearly separable.

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    The standard method for training RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, which is a special case of the general algorithm of backpropagation. A more computationally expensive online variant is called "Real-Time Recurrent Learning" or RTRL, [ 78 ] [ 79 ] which is an instance of automatic differentiation in ...

  9. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low learning rate will either take too long to converge or get stuck in an undesirable local minimum.