enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .

  4. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies. Performing these operations requires knowing at least N′ and R 2 mod N.

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).

  7. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    This can be accomplished via modular exponentiation, which is the slowest part of the algorithm. The gate thus defined satisfies U r = I {\displaystyle U^{r}=I} , which immediately implies that its eigenvalues are the r {\displaystyle r} -th roots of unity ω r k = e 2 π i k / r {\displaystyle \omega _{r}^{k}=e^{2\pi ik/r}} .

  8. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    By making logarithm and exponentiation tables for the finite field, subtracting the logarithm from p n − 1 and exponentiating the result. By making a modular multiplicative inverse table for the finite field and doing a lookup. By mapping to a composite field where inversion is simpler, and mapping back.

  9. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.