enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  3. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies. Performing these operations requires knowing at least N′ and R 2 mod N.

  4. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    The simplest method is the double-and-add method, [2] similar to square-and-multiply in modular exponentiation. The algorithm works as follows: The algorithm works as follows: To compute sP , start with the binary representation for s : ⁠ s = s 0 + 2 s 1 + 2 2 s 2 + ⋯ + 2 n − 1 s n − 1 {\displaystyle s=s_{0}+2s_{1}+2^{2}s_{2}+\cdots +2 ...

  5. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 ⁡ 3 ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .

  9. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication.It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.