enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .

  4. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    The runtime bottleneck of Shor's algorithm is quantum modular exponentiation, which is by far slower than the quantum Fourier transform and classical pre-/post-processing. There are several approaches to constructing and optimizing circuits for modular exponentiation.

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies. Performing these operations requires knowing at least N′ and R 2 mod N.

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 ⁡ 3 ...

  8. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .

  9. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex. The level-index arithmetic (LI and SLI) of Charles Clenshaw, Frank Olver and Peter Turner is a scheme based on a generalized logarithm representation.