Search results
Results from the WOW.Com Content Network
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
Earth's inner core is the innermost geologic ... The velocity of the S waves in the core varies smoothly from about 3.7 km/s at the center to about 3.5 km/s at the ...
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
Shift of the world's economic center of gravity since 1980 and projected until 2050 [7] Various definitions of geographical centres exists. The definitions used by the references in this article refer to calculations within the 2 dimensions of a surface, mainly as the surface of Earth is the domain of human cultural existence.
Separating the planet’s rocky crust and the molten outer core, the mantle makes up 70 percent of the Earth’s mass and 84 percent of its volume. But despite its outsized influence on the planet ...
Earth's circumference is the distance around Earth. Measured around the equator, it is 40,075.017 km (24,901.461 mi). Measured passing through the poles, the circumference is 40,007.863 km (24,859.734 mi). [1] Treating the Earth as a sphere, its circumference would be its single most important measurement. [2]
A geostationary orbit, also referred to as a geosynchronous equatorial orbit [a] (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.
The original calculations assumed that the Earth has the same density throughout - and the gravitational force changes as you approach the center, much like the weight of a spring that bounces up ...