enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.

  3. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The least-upper-bound property states that every nonempty subset of real numbers having an upper bound (or bounded above) must have a least upper bound (or supremum) in the set of real numbers. The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers

  4. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  5. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...

  6. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    An uncountably infinite cardinal κ having cofinality ℵ 0 means that there is a (countable-length) sequence κ 0 ≤ κ 1 ≤ κ 2 ≤ ... of cardinals κ i < κ whose limit (i.e. its least upper bound) is κ (see Easton's theorem). As per the definition above, ℵ ω is the limit of a countable-length sequence of smaller cardinals.

  7. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).

  8. Complete Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Complete_Boolean_algebra

    Then given any upper bound X of A 0, A 1, … in P(ω)/Fin, we can find a lesser upper bound, by removing from a representative for X one element of each a n. Therefore the A n have no supremum. Properties of complete Boolean algebras

  9. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    For example, -5 is a lower bound of the natural numbers as a subset of the integers. Given a set of sets, an upper bound for these sets under the subset ordering is given by their union. In fact, this upper bound is quite special: it is the smallest set that contains all of the sets. Hence, we have found the least upper bound of a set