enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    In the case of two dimensions, the intuition is as follows: For any line segment xy, consider the possible range of lengths of xv, where v is any point on the perpendicular bisector of xy. It is apparent that while there is no upper bound to the length of xv, there is a lower bound, which occurs when v is the midpoint of xy.

  3. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.

  4. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    For example, -5 is a lower bound of the natural numbers as a subset of the integers. Given a set of sets, an upper bound for these sets under the subset ordering is given by their union. In fact, this upper bound is quite special: it is the smallest set that contains all of the sets. Hence, we have found the least upper bound of a set

  5. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  6. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    Each set of elements has a least upper bound (their "join") and a greatest lower bound (their "meet"), so that it forms a lattice, and more specifically (for partitions of a finite set) it is a geometric and supersolvable lattice. [6] [7] The partition lattice of a 4-element set has 15 elements and is depicted in the Hasse diagram on the left.

  7. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...

  8. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).

  9. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers = {<}. This set has an upper bound. However, this set has no least upper bound in Q: the least upper bound as a subset of the reals would be √2, but it does not exist in Q.