enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  4. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

  5. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.

  6. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    one of these groups in an m-dimensional subspace combined with another one in the orthogonal (n−m)-dimensional space; Examples in 3D of combinations: all rotations about one fixed axis; ditto combined with reflection in planes through the axis and/or a plane perpendicular to the axis

  7. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    As the special Euclidean group is a subgroup of index two of the Euclidean group, given a reflection r, every rigid transformation that is not a rigid motion is the product of r and a rigid motion. A glide reflection is an example of a rigid transformation that is not a rigid motion or a reflection.

  8. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    Application of any rigid transformation (dual quaternion) or reflection to any object, including points, lines, planes and indeed other rigid transformations, is ~, where is object to be transformed. This is known as group conjugation or colloquially as the "sandwich product".

  9. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...