enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Minkowski's question-mark function - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_question-mark...

    The question mark function provides a one-to-one mapping from the non-dyadic rationals to the quadratic irrationals, thus allowing an explicit proof of countability of the latter. These can, in fact, be understood to correspond to the periodic orbits for the dyadic transformation. This can be explicitly demonstrated in just a few steps.

  4. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  5. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  6. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    This defines an injection from the quadratic irrationals to quadruples of integers, so their cardinality is at most countable; since on the other hand every square root of a prime number is a distinct quadratic irrational, and there are countably many prime numbers, they are at least countable; hence the quadratic irrationals are a countable set.

  7. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Being a G-delta set—i.e., a countable intersection of open subsets—in a complete metric space, the space of irrationals is completely metrizable: that is, there is a metric on the irrationals inducing the same topology as the restriction of the Euclidean metric, but with respect to which the irrationals are complete.

  8. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.

  9. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.