Search results
Results from the WOW.Com Content Network
In which case, if P 1 (S) is the set of one-element subsets of S and f is a proposed bijection from P 1 (S) to P(S), one is able to use proof by contradiction to prove that |P 1 (S)| < |P(S)|. The proof follows by the fact that if f were indeed a map onto P(S), then we could find r in S, such that f({r}) coincides with the modified diagonal set ...
As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.
The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...
Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.
Cardinal functions are widely used in topology as a tool for describing various topological properties. [4] [5] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [6] prefer to define the cardinal functions listed below so that they never take on finite cardinal numbers as values; this requires modifying some of the definitions ...
The cardinality of any infinite ordinal number is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its initial ordinal. Any set whose cardinality is an aleph is equinumerous with an ordinal and is thus well-orderable. Each finite set is well-orderable, but does not have an aleph as its cardinality.