enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.

  3. Alternative hypothesis - Wikipedia

    en.wikipedia.org/wiki/Alternative_hypothesis

    The statement that is being tested against the null hypothesis is the alternative hypothesis. [2] Alternative hypothesis is often denoted as H a or H 1. In statistical hypothesis testing, to prove the alternative hypothesis is true, it should be shown that the data is contradictory to the null hypothesis. Namely, there is sufficient evidence ...

  4. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    We define two hypotheses the null hypothesis, and the alternative hypothesis. If we design the test such that α is the significance level - being the probability of rejecting H 0 {\displaystyle H_{0}} when H 0 {\displaystyle H_{0}} is in fact true, then the power of the test is 1 - β where β is the probability of failing to reject H 0 ...

  5. False positive rate - Wikipedia

    en.wikipedia.org/wiki/False_positive_rate

    In statistics, when performing multiple comparisons, a false positive ratio (also known as fall-out or false alarm rate [1]) is the probability of falsely rejecting the null hypothesis for a particular test.

  6. Null distribution - Wikipedia

    en.wikipedia.org/wiki/Null_distribution

    Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution

  7. Equivalence test - Wikipedia

    en.wikipedia.org/wiki/Equivalence_test

    Equivalence tests are a variety of hypothesis tests used to draw statistical inferences from observed data. In these tests, the null hypothesis is defined as an effect large enough to be deemed interesting, specified by an equivalence bound. The alternative hypothesis is any effect that is less extreme than said equivalence bound.

  8. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    The critical value is the number that the test statistic must exceed to reject the test. In this case, F crit (2,15) = 3.68 at α = 0.05. Since F=9.3 > 3.68, the results are significant at the 5% significance level. One would not accept the null hypothesis, concluding that there is strong evidence that the expected values in the three groups ...

  9. Jonckheere's trend test - Wikipedia

    en.wikipedia.org/wiki/Jonckheere's_Trend_Test

    In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...