Search results
Results from the WOW.Com Content Network
Diagram of a RAID 1 setup. RAID 1 consists of an exact copy (or mirror) of a set of data on two or more disks; a classic RAID 1 mirrored pair contains two disks.This configuration offers no parity, striping, or spanning of disk space across multiple disks, since the data is mirrored on all disks belonging to the array, and the array can only be as big as the smallest member disk.
Linux supports Matrix RAID and Rapid Storage Technology (RST) through device mapper, with dmraid tool, for RAID 0, 1 and 10. And Linux MD RAID, with mdadm tool, for RAID 0, 1, 10, and 5. Set up of the RAID volumes must be done by using the ROM option in the Matrix Storage Manager, then further configuration can be done in DM-RAID or MD-RAID. [10]
RAID (/ r eɪ d /; redundant array of inexpensive disks or redundant array of independent disks) [1] [2] is a data storage virtualization technology that combines multiple physical data storage components into one or more logical units for the purposes of data redundancy, performance improvement, or both.
It often implements hardware RAID, thus it is sometimes referred to as RAID controller. It also often provides additional disk cache . Disk array controller is often ambiguously shortened to disk controller which can also refer to the circuitry responsible for managing internal disk drive operations.
RAID 01, also called RAID 0+1, is a RAID level using a mirror of stripes, achieving both replication and sharing of data between disks. [3] The usable capacity of a RAID 01 array is the same as in a RAID 1 array made of the same drives, in which one half of the drives is used to mirror the other half.
These are designed to be easy to set up on commodity PC hardware, and are typically configured using a web browser. They can run from a virtual machine, Live CD, bootable USB flash drive , or from one of the mounted hard drives. They run Samba (an SMB daemon), NFS daemon, and FTP daemons which are freely available for those operating systems.
The Advanced Host Controller Interface (AHCI) is a technical standard defined by Intel that specifies the register-level interface of Serial ATA (SATA) host controllers in a non-implementation-specific manner in its motherboard chipsets.
The SAS is a new generation serial communication protocol for devices designed to allow for much higher speed data transfers and is compatible with SATA. SAS uses a mechanically identical data and power connector to standard 3.5-inch SATA1/SATA2 HDDs, and many server-oriented SAS RAID controllers are also capable of addressing SATA hard drives.