Search results
Results from the WOW.Com Content Network
A crista (/ ˈ k r ɪ s t ə /; pl.: cristae) is a fold in the inner membrane of a mitochondrion. The name is from the Latin for crest or plume , and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for chemical reactions to occur on.
The inner membrane is a phospholipid bilayer that contains the complexes of oxidative phosphorylation. which contains the electron transport chain that is found on the cristae of the inner membrane and consists of four protein complexes and ATP synthase.
The end of cristae are partially closed by transmembrane protein complexes that bind head to head and link opposing crista membranes in a bottleneck-like fashion. [2] For example, deletion of the junction protein IMMT leads to a reduced inner membrane potential and impaired growth [ 3 ] and to dramatically aberrant inner membrane structures ...
The crista ampullaris is the sensory organ of rotation. They are found in the ampullae of each of the semicircular canals of the inner ear, meaning that there are three pairs in total.
The electron transport protein plastocyanin is present in the lumen and shuttles electrons from the cytochrome b6f protein complex to photosystem I. While plastoquinones are lipid-soluble and therefore move within the thylakoid membrane, plastocyanin moves through the thylakoid lumen.
The phospholipid membrane encloses the cisternal space (or lumen), which is continuous with the perinuclear space but separate from the cytosol. The functions of the endoplasmic reticulum can be summarized as the synthesis and export of proteins and membrane lipids, but varies between ER and cell type and cell function.
The inner mitochondrial membrane divides the mitochondrial lumen into two parts: the inner border membrane, which runs parallel to the OMM, and the cristae, which are deeply twisted, multinucleated invaginations that give room for surface area enlargement and house the mitochondrial respiration apparatus.
The precursor is then transferred to a protein's asparagine residue as soon as the protein enters the ER lumen. The attachment of the oligosaccharide to the asparagine is catalyzed by the enzyme oligosaccharyltransferase. [8] Once the glycosylated protein enters the ER, further processing of the oligosaccharide occurs.