Search results
Results from the WOW.Com Content Network
The most commonly used dye in agarose gel gel electrophoresis of DNA and RNA, dating as far back as the 1970s, is ethidium bromide (2,7-diamino-10-ethyl-9-phenylphenanthridiniumbromide). [ citation needed ] Ethidium Bromide (EtBr) is an orange-colored fluorescent intercalating dye.
Ethidium bromide (or homidium bromide, [2] chloride salt homidium chloride) [3] [4] is an intercalating agent commonly used as a fluorescent tag (nucleic acid stain) in molecular biology laboratories for techniques such as agarose gel electrophoresis. It is commonly abbreviated as EtBr, which is also an abbreviation for bromoethane.
GelRed is an intercalating nucleic acid stain used in molecular genetics for agarose gel DNA electrophoresis. GelRed structurally consists of two ethidium subunits that are bridged by a linear oxygenated spacer. [1] [2] GelRed is a fluorophore, and its optical properties are essentially identical to those of ethidium bromide.
A number of factors can affect the migration of nucleic acids: the dimension of the gel pores (gel concentration), size of DNA being electrophoresed, the voltage used, the ionic strength of the buffer, and the concentration of intercalating dye such as ethidium bromide if used during electrophoresis.
For fluorescent dyes, after electrophoresis the gel is illuminated with an ultraviolet lamp (usually by placing it on a light box, while using protective gear to limit exposure to ultraviolet radiation). The illuminator apparatus mostly also contains imaging apparatus that takes an image of the gel, after illumination with UV radiation.
GelGreen is an intercalating nucleic acid stain used in molecular genetics for agarose gel DNA electrophoresis. GelGreen consists of two acridine orange subunits that are bridged by a linear oxygenated spacer. [1] [2] Its fluorophore, and therefore its optical properties, are essentially identical to those of other N-alkylacridinium orange dyes.
Ligands may interact with DNA by covalently binding, electrostatically binding, or intercalating. [1] Intercalation occurs when ligands of an appropriate size and chemical nature fit themselves in between base pairs of DNA. These ligands are mostly polycyclic, aromatic, and planar, and therefore often make good nucleic acid stains.
The three samples are mixed and loaded onto IEF (isoelectric focusing chromatography) for first dimension and the strip is transferred to a SDS PAGE.After the gel electrophoresis, the gel is scanned with the excitation wavelength of each dye one after the other, so each sample can be seen separately (if we scan the gel at the excitation wavelength of the Cy3 dye, we will see in the gel only ...