Search results
Results from the WOW.Com Content Network
The total time is 1.1191 + 0.8672 = 1.9863 The conclusion, based on this particular model, is that equation 6 is slightly faster than equation 5, regardless of the fact that equation 6 has more terms. This result is typical of the general trend. The dominant factor is the ratio between and . In order to achieve a high ratio, it is necessary to ...
Machin's formula [4] (for which the derivation is straightforward) is: = The benefit of the new formula, a variation on the Gregory–Leibniz series ( π / 4 = arctan 1), was that it had a significantly increased rate of convergence, which made it a much more practical method of calculation.
The earliest person to whom the series can be attributed with confidence is Mādhava of Sangamagrāma (c. 1340 – c. 1425). The original reference (as with much of Mādhava's work) is lost, but he is credited with the discovery by several of his successors in the Kerala school of astronomy and mathematics founded by him.
For example, the arithmetic mean of 0° and 360° is 180°, which is misleading because 360° equals 0° modulo a full cycle. [1] As another example, the "average time" between 11 PM and 1 AM is either midnight or noon, depending on whether the two times are part of a single night or part of a single calendar day.
In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. [1]
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown.. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).