Search results
Results from the WOW.Com Content Network
In computer science and software engineering, busy-waiting, busy-looping or spinning is a technique in which a process repeatedly checks to see if a condition is true, such as whether keyboard input or a lock is available. Spinning can also be used to generate an arbitrary time delay, a technique that was necessary on systems that lacked a ...
This approach is called asynchronous input/output. Any task that depends on the I/O having completed (this includes both using the input values and critical operations that claim to assure that a write operation has been completed) still needs to wait for the I/O operation to complete, and thus is still blocked, but other processing that does ...
At this point, the CPU sits idle. The CPU-bound process will then move back to the ready queue and be allocated the CPU. Again, all the I/O processes end up waiting in the ready queue until the CPU-bound process is done. There is a convoy effect as all the other processes wait for the one big process to get off the CPU. This effect results in ...
This technique pertains to multitasking operating systems, and is sometimes called a subprocess or traditionally a subtask. There are two major procedures for creating a child process: the fork system call (preferred in Unix-like systems and the POSIX standard) and the spawn (preferred in the modern (NT) kernel of Microsoft Windows , as well as ...
A critical section is typically used when a multi-threaded program must update multiple related variables without a separate thread making conflicting changes to that data. In a related situation, a critical section may be used to ensure that a shared resource, for example, a printer, can only be accessed by one process at a time.
Cooperative multitasking is similar to async/await in languages, such as JavaScript or Python, that feature a single-threaded event-loop in their runtime. This contrasts with cooperative multitasking in that await cannot be invoked from a non-async function, but only an async function, which is a kind of coroutine .
The input–process–output model. The input–process–output (IPO) model, or input-process-output pattern, is a widely used approach in systems analysis and software engineering for describing the structure of an information processing program or other process.
Another Unix breakthrough was to automatically associate input and output to terminal keyboard and terminal display, respectively, by default [citation needed] — the program (and programmer) did absolutely nothing to establish input and output for a typical input-process-output program (unless it chose a different paradigm).