Search results
Results from the WOW.Com Content Network
A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
Classification of quadrilaterals by their symmetry subgroups. [12] The 8-fold symmetry of the square is labeled as r8, at the top of the image. The "gyrational square" below it corresponds to the subgroup of four orientation-preserving symmetries of a square, using rotations but not reflections. The square is the most symmetrical of the ...
In elementary geometry, a quadrilateral whose diagonals are perpendicular and of equal length has been called a midsquare quadrilateral (referring to the square formed by its four edge midpoints). [ 1 ] [ 2 ] These shapes are, by definition, simultaneously equidiagonal quadrilaterals and orthodiagonal quadrilaterals . [ 2 ]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Download QR code; Print/export Download as PDF; Printable version; ... Help. Pages in category "Types of quadrilaterals" The following 29 pages are in this category ...
The midpoints of the sides of any quadrilateral with perpendicular diagonals form a rectangle. A parallelogram with equal diagonals is a rectangle. The Japanese theorem for cyclic quadrilaterals [12] states that the incentres of the four triangles determined by the vertices of a cyclic quadrilateral taken three at a time form a rectangle.
The following other wikis use this file: Usage on ang.wikipedia.org Fēowerecge; Usage on ar.wikipedia.org شبه منحرف; مربع; مستطيل
In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus. A rhombus is a tangential quadrilateral. [10] That is, it has an inscribed circle that is tangent to all four sides. A rhombus.