Search results
Results from the WOW.Com Content Network
LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models. For the training cost column, 1 petaFLOP-day = 1 petaFLOP/sec × 1 day = 8.64E19 FLOP. Also, only the largest model's cost is written.
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.
For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning. [24] In-context learning is an emergent ability [25] of large language models.
A word n-gram language model is a purely statistical model of language. It has been superseded by recurrent neural network–based models, which have been superseded by large language models. [12] It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words.
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]
Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...
Download as PDF; Printable version; In other projects ... move to sidebar hide. Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of ...