Search results
Results from the WOW.Com Content Network
In antenna terms, each of the conductors making up the antenna is known as an element. [9] To calculate the net result, NEC breaks the antenna's elements into a number of sampled points, called segments. It uses simple calculations based on the diameter of the conductor and the wavelength of the signal to determine the induced voltage and ...
The combination principle is explained using quantum theory. Light consists of photons whose energy E is proportional to the frequency ν and wavenumber of the light: E = hν = hc/λ (where h is the Planck constant, c is the speed of light, and λ is the wavelength). A combination of frequencies or wavenumbers is then equivalent to a ...
Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms. Throughout most of the electromagnetic spectrum, spectroscopy can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength ...
The analysis of lumped-element components assumes that the wavelength at the frequency of operation is much greater than the dimensions of the components themselves. The Smith chart may be used to analyze such circuits in which case the movements around the chart are generated by the (normalized) impedances and admittances of the components at ...
Here is a table of all known Barker codes, where negations and reversals of the codes have been omitted. A Barker code has a maximum autocorrelation sequence which has sidelobes no larger than 1. It is generally accepted that no other perfect binary phase codes exist.
Frequency dispersion of surface gravity waves on deep water. The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half.
The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted.
The FMM was first introduced by Greengard and Rokhlin [3] [4] and is based on the multipole expansion technique. The first application of the FMM in computational electromagnetics was by Engheta et al.(1992). [5] The FMM has also applications in computational bioelectromagnetics in the Charge based boundary element fast multipole method. FMM ...