Search results
Results from the WOW.Com Content Network
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
The yield coefficient is defined as the amount of cell mass (kg) or product formed (kg,mol) [Notes 1] related to the consumed substrate (carbon or nitrogen source or oxygen in kg or moles) or to the intracellular ATP production (moles)." [4] [5]: 168
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
c) The rate of reaction progress (product formation) is monitored over time by methods such as reaction progress calorimetry or may be obtained by taking the first derivative of (a). d) Describing the rate of reaction progress with respect to consumption of starting material spreads the data into a more informative distribution than observed in ...
In making crucible steel, the blister steel bars were broken into pieces and melted in small crucibles, each containing 20 kg or so. This produced higher quality metal, but increased the cost. The Bessemer process reduced the time needed to make lower-grade steel to about half an hour while requiring only enough coke needed to melt the pig iron.