Search results
Results from the WOW.Com Content Network
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
[2] [3] For example, if is "Spot runs", then "not " is "Spot does not run". An operand of a negation is called a negand or negatum. [4] Negation is a unary logical connective. It may furthermore be applied not only to propositions, but also to notions, truth values, or semantic values more generally.
In Boolean logic, logical NOR, [1] non-disjunction, or joint denial [1] is a truth-functional operator which produces a result that is the negation of logical or.That is, a sentence of the form (p NOR q) is true precisely when neither p nor q is true—i.e. when both p and q are false.
Disjunction: the symbol appeared in Russell in 1908 [6] (compare to Peano's use of the set-theoretic notation of union); the symbol + is also used, in spite of the ambiguity coming from the fact that the + of ordinary elementary algebra is an exclusive or when interpreted logically in a two-element ring; punctually in the history a + together ...
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
Therefore (Mathematical symbol for "therefore" is ), if it rains today, we will go on a canoe trip tomorrow". To make use of the rules of inference in the above table we let p {\displaystyle p} be the proposition "If it rains today", q {\displaystyle q} be "We will not go on a canoe today" and let r {\displaystyle r} be "We will go on a canoe ...
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]