Search results
Results from the WOW.Com Content Network
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
In MCPs, the alternatives are evaluated over a set of criteria. A criterion is an attribute that incorporates preferential information. Thus, the decision model should have some form of monotonic relationship with respect to the criteria. This kind of information is explicitly introduced (a priory) in multicriteria methods for MCPs.
The term decision matrix is used to describe a multiple-criteria decision analysis (MCDA) problem. An MCDA problem, where there are M alternative options and each needs to be assessed on N criteria, can be described by the decision matrix which has N rows and M columns, or M × N elements, as shown in the following table.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
The listagg function, as defined in the SQL:2016 standard [2] aggregates data from multiple rows into a single concatenated string. In the entity relationship diagram , aggregation is represented as seen in Figure 1 with a rectangle around the relationship and its entities to indicate that it is being treated as an aggregate entity.
Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range.
Excel pivot tables include the feature to directly query an online analytical processing (OLAP) server for retrieving data instead of getting the data from an Excel spreadsheet. On this configuration, a pivot table is a simple client of an OLAP server.