enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The notation ARMAX(p, q, b) refers to a model with p autoregressive terms, q moving average terms and b exogenous inputs terms. The last term is a linear combination of the last b terms of a known and external time series . It is given by:

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    For example, for monthly data one would typically include either a seasonal AR 12 term or a seasonal MA 12 term. For Box–Jenkins models, one does not explicitly remove seasonality before fitting the model. Instead, one includes the order of the seasonal terms in the model specification to the ARIMA estimation software. However, it may be ...

  4. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    For example, negative estimates of the variance can be produced by some choices. Formulation as a least squares regression problem in which an ordinary least squares prediction problem is constructed, basing prediction of values of X t on the p previous values of the same series. This can be thought of as a forward-prediction scheme.

  5. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Specifically, ARMA assumes that the series is stationary, that is, its expected value is constant in time. If instead the series has a trend (but a constant variance/autocovariance), the trend is removed by "differencing", [1] leaving a stationary series. This operation generalizes ARMA and corresponds to the "integrated" part of ARIMA ...

  6. Forecast either to existing data (static forecast) or "ahead" (dynamic forecast, forward in time) with these ARMA terms. Apply the reverse filter operation (fractional integration to the same level d as in step 1) to the forecasted series, to return the forecast to the original problem units (e.g. turn the ersatz units back into Price).

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because

  8. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Since the drift term =, the ZD-GARCH model is always non-stationary, and its statistical inference methods are quite different from those for the classical GARCH model. Based on the historical data, the parameters α 1 {\displaystyle ~\alpha _{1}} and β 1 {\displaystyle ~\beta _{1}} can be estimated by the generalized QMLE method.

  9. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).