Search results
Results from the WOW.Com Content Network
Increased weight does not affect the maximum range of a gliding aircraft. Glide angle is only determined by the lift/drag ratio. Increased weight will require an increased airspeed to maintain the optimum glide angle, so a heavier gliding aircraft will have reduced endurance, because it is descending along the optimum glide path at a faster ...
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
The ratio of the distance forwards to downwards is called the glide ratio. The glide ratio (E) is numerically equal to the lift-to-drag ratio under these conditions; but is not necessarily equal during other manoeuvres, especially if speed is not constant. A glider's glide ratio varies with airspeed, but there is a maximum value which is ...
Best power-off glide speed – the speed that provides maximum lift-to-drag ratio and thus the greatest gliding distance available. V BR: Best range speed – the speed that gives the greatest range for fuel consumed – often identical to V md. [35] V FS: Final segment of a departure with one powerplant failed. [36] V imd: Minimum drag [37] V ...
In gliders, other methods are used to either reduce the lift generated by the wing, increase the drag of the entire glider, or both. Glide slope is the distance traveled for each unit of height lost. In a steady wings-level glide with no wind, glide slope is the same as the lift/drag ratio (L/D) of the glider, called "L-over-D".
Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air ...
Lift-to-drag ratio#Glide ratio To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .
The Eta is an example of a trend in glider development in which private pilots initiate the development of new open class gliders. The private development of the Concordia sailplane promises a further elevation of the max lift-to-drag ratio to slightly over 75 at 137 km/h (85 mph; 74 kn). [2]