Search results
Results from the WOW.Com Content Network
A positive clamp circuit (negative peak clamper) outputs a purely positive waveform from an input signal; it offsets the input signal so that all of the waveform is greater than 0 V. A negative clamp is the opposite of this—this clamp outputs a purely negative waveform from an input signal.
For example, a diode with a Zener breakdown voltage of 3.2 V exhibits a voltage drop of very nearly 3.2 V across a wide range of reverse currents. The Zener diode is therefore well suited for applications such as the generation of a reference voltage (e.g. for an amplifier stage), or as a voltage stabilizer for low-current applications. [2]
The Villard circuit, conceived by Paul Ulrich Villard, [p 1] consists simply of a capacitor and a diode. While it has the great benefit of simplicity, its output has very poor ripple characteristics. Essentially, the circuit is a diode clamp circuit. The capacitor is charged on the negative half cycles to the peak AC voltage (V pk). The output ...
Clipping circuits are used to select, for purposes of transmission, that part of a signal waveform which lies above or below the predetermined reference voltage level. Clipping may be achieved either at one level or two levels. A clipper circuit can remove certain portions of an arbitrary waveform near the positive or negative peaks or both.
In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not ...
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
The circuit is treated as a completely linear network of ideal diodes. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes.
Simulation-based methods for time-based network analysis solve a circuit that is posed as an initial value problem (IVP). That is, the values of the components with memories (for example, the voltages on capacitors and currents through inductors) are given at an initial point of time t 0 , and the analysis is done for the time t 0 ≤ t ≤ t f ...