Search results
Results from the WOW.Com Content Network
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.
Time series: random data plus trend, with best-fit line and different applied filters. In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.
For example, time series are usually decomposed into: , the trend component at time t, which reflects the long-term progression of the series (secular variation). A trend exists when there is a persistent increasing or decreasing direction in the data. The trend component does not have to be linear. [1]
In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent ...
Forecast either to existing data (static forecast) or "ahead" (dynamic forecast, forward in time) with these ARMA terms. Apply the reverse filter operation (fractional integration to the same level d as in step 1) to the forecasted series, to return the forecast to the original problem units (e.g. turn the ersatz units back into Price).
Cointegration is a crucial concept in time series analysis, particularly when dealing with variables that exhibit trends, such as macroeconomic data. In an influential paper, [1] Charles Nelson and Charles Plosser (1982) provided statistical evidence that many US macroeconomic time series (like GNP, wages, employment, etc.) have stochastic trends.
Ideally, unevenly spaced time series are analyzed in their unaltered form. However, most of the basic theory for time series analysis was developed at a time when limitations in computing resources favored an analysis of equally spaced data, since in this case efficient linear algebra routines can be used and many problems have an explicit ...