Search results
Results from the WOW.Com Content Network
In oceanography wind fetch, also known as fetch length or simply fetch, is the length of water over which a given wind has blown without obstruction. [ 2 ] [ 3 ] Fetch is used in geography and meteorology and its effects are usually associated with sea state and when it reaches shore it is the main factor that creates storm surge which leads to ...
In fluid dynamics, wind wave modeling describes the effort to depict the sea state and predict the evolution of the energy of wind waves using numerical techniques.These simulations consider atmospheric wind forcing, nonlinear wave interactions, and frictional dissipation, and they output statistics describing wave heights, periods, and propagation directions for regional seas or global oceans.
The eddy covariance (also known as eddy correlation and eddy flux) is a key atmospheric measurement technique to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The method analyses high-frequency wind and scalar atmospheric data series, gas, energy, and momentum, [ 1 ] which yields values of fluxes of these ...
In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land.
Trying to calculate angular moments by naively applying the standard formulas to angular expressions yields absurd results. For example, a dataset that measures wind speeds of 1° and 359° would average to 180°, but expressing the same data as 1° and -1° (equal to 359°) would give an average of 0°.
Whereas the streamtube area is reduced by a propeller, it is expanded by a wind turbine. For either application, a highly simplified but useful approximation is the Rankine–Froude "momentum" or "actuator disk" model (1865, [1] 1889 [2]). This article explains the application of the "Betz limit" to the efficiency of a ground-based wind turbine.
Phase and group velocity divided by √ gh as a function of h / λ . A: phase velocity, B: group velocity, C: phase and group velocity √ gh valid in shallow water. Drawn lines: based on dispersion relation valid in arbitrary depth. Dashed lines: based on dispersion relation valid in deep water.
One example where the Rayleigh distribution naturally arises is when wind velocity is analyzed in two dimensions. Assuming that each component is uncorrelated , normally distributed with equal variance , and zero mean , which is infrequent, then the overall wind speed ( vector magnitude) will be characterized by a Rayleigh distribution.