Search results
Results from the WOW.Com Content Network
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a. This illustrates the relationship a + b / a = a / b = φ.
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
A supergolden rectangle is a rectangle whose side lengths are in a : ratio. Compared to the golden rectangle , the supergolden rectangle has one more degree of self-similarity . Given a rectangle of height 1 , length ψ {\displaystyle \psi } and diagonal length ψ 3 {\displaystyle {\sqrt {\psi ^{3}}}} (according to 1 + ψ 2 = ψ ...
Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, π / 2 radians) and two other congruent angles each measuring half of a right angle (45°, or ...
The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...
Georges Seurat, 1887-88, Parade de cirque (Circus Sideshow) with a 4 : 6 ratio division and golden mean overlay, showing only a close approximation to the divine proportion. Matila Ghyka [30] and others [31] contend that Georges Seurat used golden ratio proportions in paintings like Parade de cirque, Le Pont de Courbevoie, and Bathers at ...
Consider a rectangle such that the ratio of its length L to its width W is the n th metallic ratio. If one remove from this rectangle n squares of side length W, one gets a rectangle similar to the original rectangle; that is, a rectangle with the same ratio of the length to the width (see figures).