enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sacred geometry - Wikipedia

    en.wikipedia.org/wiki/Sacred_geometry

    According to Stephen Skinner, the study of sacred geometry has its roots in the study of nature, and the mathematical principles at work therein. [5] Many forms observed in nature can be related to geometry; for example, the chambered nautilus grows at a constant rate and so its shell forms a logarithmic spiral to accommodate that growth without changing shape.

  3. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets, in some cases based on dubious fits to data. [8] The golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other parts of vegetation.

  4. List of works designed with the golden ratio - Wikipedia

    en.wikipedia.org/wiki/List_of_works_designed...

    Other scholars question whether the golden ratio was known to or used by Greek artists and architects as a principle of aesthetic proportion. [11] Building the Acropolis is calculated to have been started around 600 BC, but the works said to exhibit the golden ratio proportions were created from 468 BC to 430 BC.

  5. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically . Natural patterns include symmetries , trees , spirals , meanders , waves , foams , tessellations , cracks and stripes. [ 1 ]

  6. Golden triangle (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Golden_triangle_(mathematics)

    A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:

  7. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.

  8. 108 (number) - Wikipedia

    en.wikipedia.org/wiki/108_(number)

    The equation ⁡ = results in the golden ratio. This could be restated as saying that the "chord" of 108 degrees is , the golden ... (sacred places). [citation needed]

  9. Mathematics and architecture - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_architecture

    The ratio of the slant height to half the base length of the Great Pyramid of Giza is less than 1% from the golden ratio. [51] If this was the design method, it would imply the use of Kepler's triangle (face angle 51°49'), [51] [52] but according to many historians of science, the golden ratio was not known until the time of the Pythagoreans. [53]