Search results
Results from the WOW.Com Content Network
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1]. Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity.
[40] [41] These reactions use Umemoto's reagent, a sulfonium salt that serves as an electrophilic source of the trifluoromethyl group and that is precedented to react via a single-electron transfer pathway. Thus, single-electron reduction of Umemoto's reagent releases trifluoromethyl radical, which adds to the reactive olefin. Subsequently ...
A Proton-coupled electron transfer (PCET) is a chemical reaction that involves the transfer of electrons and protons from one atom to another. The term was originally coined for single proton, single electron processes that are concerted, [1] but the definition has relaxed to include many related processes.
In outer sphere redox reactions no bonds are formed or broken; only an electron transfer (ET) takes place. A quite simple example is the Fe 2+ /Fe 3+ redox reaction, the self exchange reaction which is known to be always occurring in an aqueous solution containing the aquo complexes [Fe(H 2 O) 6] 2+ and [Fe(H 2 O)6] 3+.
Outer sphere electron transfer can occur between chemical species that are identical except for their oxidation state. [4] This process is termed self-exchange. An example is the degenerate reaction between the tetrahedral ions permanganate and manganate:
Schematic of photoinduced electron transfer process. Photoinduced electron transfer (PET) is an excited state electron transfer process by which an excited electron is transferred from donor to acceptor. [1] [2] Due to PET a charge separation is generated, i.e., redox reaction takes place in excited state (this phenomenon is not observed in ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
In most cases electron transfer can be assumed to be much faster than the chemical reactions. Unlike stoichiometric reactions where the steps between the starting materials and the rate limiting step dominate, in catalysis the observed reaction order is usually dominated by the steps between the catalytic resting state and the rate limiting step.