Search results
Results from the WOW.Com Content Network
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2]
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]
The main theory describing the rates of outer sphere electron transfer was developed by Rudolph A. Marcus in the 1950s, for which he was awarded the Nobel Prize in Chemistry in 1992. [2] A major aspect of Marcus theory is the dependence of the electron transfer rate on the thermodynamic driving force (difference in the redox potentials of the ...
Inner sphere electron transfer (IS ET) or bonded electron transfer [1] is a redox chemical reaction that proceeds via a covalent linkage—a strong electronic interaction—between the oxidant and the reductant reactants. In inner sphere electron transfer, a ligand bridges the two metal redox centers during the electron transfer event. Inner ...
The E represents an electron transfer; sometimes E O and E R are used to represent oxidations and reductions respectively. The C represents a chemical reaction which can be any elementary reaction step and is often called a "following" reaction. In coordination chemistry common C steps which "follow" electron transfer are ligand loss and
In chemistry, adiabatic electron-transfer is a type of oxidation-reduction process. The mechanism is ubiquitous in nature in both the inorganic and biological spheres. Adiabatic electron-transfers proceed without making or breaking chemical bonds. Adiabatic electron-transfer can occur by either optical or thermal mechanisms.
A Proton-coupled electron transfer (PCET) is a chemical reaction that involves the transfer of electrons and protons from one atom to another. The term was originally coined for single proton, single electron processes that are concerted, [ 1 ] but the definition has relaxed to include many related processes.
The following scheme shows the reaction mechanism: Stephen aldehyde synthesis: Reaction mechanism. By addition of hydrogen chloride the used nitrile (1) reacts to its corresponding salt (2). It is believed that this salt is reduced by a single electron transfer by the tin(II) chloride (3a and 3b). [3]