enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann–Siegel formula - Wikipedia

    en.wikipedia.org/wiki/RiemannSiegel_formula

    Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.

  3. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function.

  4. Riemann–Silberstein vector - Wikipedia

    en.wikipedia.org/wiki/Riemann–Silberstein_vector

    In mathematical physics, in particular electromagnetism, the Riemann–Silberstein vector [1] or Weber vector [2] [3] named after Bernhard Riemann, Heinrich Martin Weber and Ludwik Silberstein, (or sometimes ambiguously called the "electromagnetic field") is a complex vector that combines the electric field E and the magnetic field B.

  5. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  6. Riemann–Siegel theta function - Wikipedia

    en.wikipedia.org/wiki/RiemannSiegel_theta...

    In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as = ⁡ ((+)) ⁡for real values of t.Here the argument is chosen in such a way that a continuous function is obtained and () = holds, i.e., in the same way that the principal branch of the log-gamma function is defined.

  7. List of things named after Bernhard Riemann - Wikipedia

    en.wikipedia.org/wiki/List_of_things_named_after...

    1.3 Physics. 2 Riemannian. 3 Riemann's. ... Riemann–Siegel formula; Riemann–Siegel theta function; Physics ... Riemann's differential equation; Riemann's ...

  8. Cauchy–Riemann equations - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Riemann_equations

    Defining the two Wirtinger derivatives as = (), ¯ = (+), the Cauchy–Riemann equations can then be written as a single equation ¯ =, and the complex derivative of in that case is =. In this form, the Cauchy–Riemann equations can be interpreted as the statement that a complex function f {\textstyle f} of a complex variable z {\textstyle z ...

  9. Bernhard Riemann - Wikipedia

    en.wikipedia.org/wiki/Bernhard_Riemann

    Georg Friedrich Bernhard Riemann (German: [ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman] ⓘ; [1] [2] 17 September 1826 – 20 July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry.