enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...

  3. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    The application of tensile stress opposes the reduction in energy gained by void shrinkage. Thus, a certain magnitude of applied tensile stress is required to offset these shrinkage effects and cause void growth and creep fracture in materials at high temperature. This stress occurs at the sintering limit of the system. [26]

  4. Compressive stress - Wikipedia

    en.wikipedia.org/wiki/Compressive_stress

    In everyday life, compressive stresses are common in many structures and materials. For instance, the weight of a building creates compressive stresses in its walls and foundations. Similarly, when a person stands, the bones in their legs experience compressive stresses due to the weight of the body pushing down.

  5. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    The relevant information is the area of the material being sheared, i.e. the area across which the shearing action takes place, and the shear strength of the material. A round bar of steel is used as an example. The shear strength is calculated from the tensile strength using a factor which relates the two strengths.

  6. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Subsequent deformation requires a stress that varies linearly with the strain observed, the slope of the graph of stress vs. strain is the modulus of elasticity, as usual. The work-hardened steel bar fractures when the applied stress exceeds the usual fracture stress and the strain exceeds usual fracture strain.

  7. Tension (geology) - Wikipedia

    en.wikipedia.org/wiki/Tension_(geology)

    Tensile stress forms joints in rocks. A joint is a fracture that forms within a rock, whose movement to open the fracture is greater than the lateral movement that takes place. Joints are formed in the direction perpendicular to the least principal stress, meaning that they are formed perpendicular to the tensile stress. [1]

  8. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    Stress components on a 2D rotating element. Click to see animation. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied. Principal stresses occur when the shear stresses simultaneously disappear from all faces. The orientation at which this occurs gives the principal ...

  9. Fracture - Wikipedia

    en.wikipedia.org/wiki/Fracture

    Fracture strength, also known as breaking strength, is the stress at which a specimen fails via fracture. [2] This is usually determined for a given specimen by a tensile test, which charts the stress–strain curve (see image). The final recorded point is the fracture strength.