Search results
Results from the WOW.Com Content Network
In cyclic photophosphorylation, the high-energy electron released from P700, a pigment in a complex called photosystem I, flows in a cyclic pathway. The electron starts in photosystem I, passes from the primary electron acceptor to ferredoxin and then to plastoquinone , next to cytochrome b 6 f (a similar complex to that found in mitochondria ...
In cyclic photophosphorylation, cytochrome b 6 f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions. The net-reaction of all light-dependent reactions in oxygenic photosynthesis ...
The first step in ED is phosphorylation of glucose by a family of enzymes called hexokinases to form glucose 6-phosphate (G6P). This reaction consumes ATP, but it acts to keep the glucose concentration low, promoting continuous transport of glucose into the cell through the plasma membrane transporters.
If electrons only pass through once, the process is termed noncyclic photophosphorylation, but if they pass through PSI and the proton pump multiple times it is called cyclic photophosphorylation. When the electron reaches photosystem I, it fills the electron deficit of light-excited reaction-center chlorophyll P700 + of PSI.
The cyclic reaction is similar to that of the non-cyclic but differs in that it generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place only at photosystem I. Once the electron is displaced from the photosystem, the electron is passed down the electron acceptor molecules and returns to photosystem I, from ...
In non-cyclic photophosphorylation, ferredoxin is the last electron acceptor thus reducing the enzyme NADP + reductase. It accepts electrons produced from sunlight - excited chlorophyll and transfers them to the enzyme ferredoxin: NADP + oxidoreductase EC 1.18.1.2 .
The evolution of oxygen during the light-dependent steps in photosynthesis (Hill reaction) was proposed and proven by British biochemist Robin Hill. He demonstrated that isolated chloroplasts would make oxygen (O 2) but not fix carbon dioxide (CO 2). This is evidence that the light and dark reactions occur at different sites within the cell. [1 ...
The last steps of this process occur in mitochondria. The reduced molecules NADH and FADH 2 are generated by the Krebs cycle , glycolysis , and pyruvate processing. These molecules pass electrons to an electron transport chain , which releases the energy of oxygen to create a proton gradient across the inner mitochondrial membrane .