Search results
Results from the WOW.Com Content Network
Pattern blocks were developed, along with a Teacher's Guide to their use, [1] at the Education Development Center in Newton, Massachusetts as part of the Elementary Science Study (ESS) project. [5] The first Trial Edition of the Teacher's Guide states: "Work on Pattern Blocks was begun by Edward Prenowitz in 1963.
The "staggered" Arakawa C-grid further separates evaluation of vector quantities compared to the Arakawa B-grid. e.g., instead of evaluating both east-west (u) and north-south (v) velocity components at the grid center, one might evaluate the u components at the centers of the left and right grid faces, and the v components at the centers of the upper and lower grid faces.
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell.
The "globe", in the DGG concept, has no strict semantics, but in geodesy a so-called "grid reference system" is a grid that divides space with precise positions relative to a datum, that is an approximated a "standard model of the Geoid". So, in the role of Geoid, the "globe" covered by a DGG can be any of the following objects:
Polygon decomposition is applied in several areas: [1] Pattern recognition techniques extract information from an object in order to describe, identify or classify it. An established strategy for recognising a general polygonal object is to decompose it into simpler components, then identify the components and their interrelationships and use this information to determine the shape of the object.
The individual cells of a grid system can also be useful as units of aggregation, for example as a precursor to data analysis, presentation, mapping, etc. For some applications (e.g., statistical analysis), equal-area cells may be preferred, although for others this may not be a prime consideration.
In applied mathematics, a grid or mesh is defined as the set of smaller shapes formed after discretisation of a geometric domain. Meshing has applications in the fields of geography, designing, computational fluid dynamics, [1] and more generally in partial differential equations numerical solving. The geometric domain can be in any dimension.
For example, the icosahedron is {3,5+} 1,0, and pentakis dodecahedron, {3,5+} 1,1 is seen as a regular dodecahedron with pentagonal faces divided into 5 triangles. The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created.