Search results
Results from the WOW.Com Content Network
In complex analysis of one and several complex variables, Wirtinger derivatives (sometimes also called Wirtinger operators [1]), named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives ...
First derivative test; Second derivative test; Extreme value theorem; Differential equation; Differential operator; Newton's method; Taylor's theorem; L'Hôpital's rule; General Leibniz rule; Mean value theorem; Logarithmic derivative; Differential (calculus) Related rates; Regiomontanus' angle maximization problem; Rolle's theorem
The Cousin problem is a problem related to the analytical properties of complex manifolds, but the only obstructions to solving problems of a complex analytic property are pure topological; [80] [39] [31] Serre called this the Oka principle. [84] They are now posed, and solved, for arbitrary complex manifold M, in terms of conditions on M.
Color wheel graph of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i . Hue represents the argument , brightness the magnitude. One of the central tools in complex analysis is the line integral .
Geometric calculus defines a derivative operator ∇ = ê i ∂ i under its geometric product — that is, for a k-vector field ψ(r), the derivative ∇ψ generally contains terms of grade k + 1 and k − 1. For example, a vector field (k = 1) generally has in its derivative a scalar part, the divergence (k = 0), and a bivector part, the curl ...
However, this formal similarity notwithstanding, possessing a complex-antiderivative is a much more restrictive condition than its real counterpart. While it is possible for a discontinuous real function to have an anti-derivative, anti-derivatives can fail to exist even for holomorphic functions of a complex variable.
In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad ...
Equations involving derivatives are called differential equations and are fundamental in describing natural phenomena. Derivatives and their generalizations appear in many fields of mathematics, such as complex analysis, functional analysis, differential geometry, measure theory, and abstract algebra.