enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.

  3. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).

  4. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    since / = 1.239 841 984... × 10 −6 eV⋅m [4] where h is the Planck constant, c is the speed of light, and e is the elementary charge. The photon energy of near infrared radiation at 1 μm wavelength is approximately 1.2398 eV.

  5. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that light in vacuum.

  6. Velocity factor - Wikipedia

    en.wikipedia.org/wiki/Velocity_factor

    The velocity factor (VF), [1] also called wave propagation (relative) speed or (relative) velocity of propagation (VoP or ), [2] of a transmission medium is the ratio of the speed at which a wavefront (of an electromagnetic signal, a radio signal, a light pulse in an optical fibre or a change of the electrical voltage on a copper wire) passes through the medium, to the speed of light in vacuum.

  7. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    In the context of electromagnetics and optics, the frequency is some function ω(k) of the wave number, so in general, the phase velocity and the group velocity depend on specific medium and frequency. The ratio between the speed of light c and the phase velocity v p is known as the refractive index, n = c / v p = ck / ω.

  8. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.

  9. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    The speed at which energy or signals travel down a cable is actually the speed of the electromagnetic wave traveling along (guided by) the cable. I.e., a cable is a form of a waveguide. The propagation of the wave is affected by the interaction with the material(s) in and surrounding the cable, caused by the presence of electric charge carriers ...