Search results
Results from the WOW.Com Content Network
Air sparging, also known as in situ air stripping [1] and in situ volatilization is an in situ remediation technique, used for the treatment of saturated soils and groundwater contaminated by volatile organic compounds (VOCs) like petroleum hydrocarbons, [2] a widespread problem for the ground water and soil health.
Air sparging is the process of blowing air directly into the ground water. As the bubbles rise, the contaminants are removed from the groundwater by physical contact with the air (i.e., stripping) and are carried up into the unsaturated zone (i.e., soil).
This process is known as volatization or air stripping. Water is deposited into the system through the top and air is ventilated in through the bottom. Water that reaches the bottom of the system is typically considered treated, but additional testing may be done to determine if it is safe for consumption. [ 1 ]
Soil vapor extraction (SVE) is a physical treatment process for in situ remediation of volatile contaminants in vadose zone (unsaturated) soils (EPA, 2012). SVE (also referred to as in situ soil venting or vacuum extraction) is based on mass transfer of contaminant from the solid (sorbed) and liquid (aqueous or non-aqueous) phases into the gas phase, with subsequent collection of the gas phase ...
Sparging may refer to: Sparging (chemistry) , a process in which a gas is bubbled through a liquid to remove other gases or volatile compounds Air sparging , a remediation process in which air is pushed through contaminated water or soil to remove volatile pollutants
These substances are injected into the aquifer and then allowed to propagate by gravity and water current. As contaminants are encountered, the substances oxidize them and purify the water. Ozone is delivered (sparged) as a gas in either a dry air or oxygen carrier gas. Specialized equipment is required for in-situ oxidation via ozone gas ...
For premium support please call: 800-290-4726 more ways to reach us more ways to reach us
This process was pioneered by Carl von Linde in the early 20th century and is still used today to produce high purity gases. He developed it in the year 1895; the process remained purely academic for seven years before it was used in industrial applications for the first time (1902). [3] Distillation column in a cryogenic air separation plant