enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Geometry in computer vision - Wikipedia

    en.wikipedia.org/wiki/Category:Geometry_in...

    Geometry in computer vision is a sub-field within computer vision dealing with geometric relations between the 3D world and its projection into 2D image, typically by means of a pinhole camera. Common problems in this field relate to Reconstruction of geometric structures (for example, points or lines) in the 3D world based on measurements in ...

  3. Geometric feature learning - Wikipedia

    en.wikipedia.org/wiki/Geometric_feature_learning

    Geometric feature learning is a technique combining machine learning and computer vision to solve visual tasks. The main goal of this method is to find a set of representative features of geometric form to represent an object by collecting geometric features from images and learning them using efficient machine learning methods.

  4. Image rectification - Wikipedia

    en.wikipedia.org/wiki/Image_rectification

    If the images to be rectified are taken from camera pairs without geometric distortion, this calculation can easily be made with a linear transformation.X & Y rotation puts the images on the same plane, scaling makes the image frames be the same size and Z rotation & skew adjustments make the image pixel rows directly line up [citation needed].

  5. Fundamental matrix (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Fundamental_matrix...

    In computer vision, the fundamental matrix is a 3×3 matrix which relates corresponding points in stereo images.In epipolar geometry, with homogeneous image coordinates, x and x′, of corresponding points in a stereo image pair, Fx describes a line (an epipolar line) on which the corresponding point x′ on the other image must lie.

  6. Triangulation (computer vision) - Wikipedia

    en.wikipedia.org/.../Triangulation_(computer_vision)

    In computer vision, triangulation refers to the process of determining a point in 3D space given its projections onto two, or more, images. In order to solve this problem it is necessary to know the parameters of the camera projection function from 3D to 2D for the cameras involved, in the simplest case represented by the camera matrices .

  7. Homography (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Homography_(computer_vision)

    Geometrical setup for homography: stereo cameras O 1 and O 2 both pointed at X in epipolar geometry. Drawing from Neue Konstruktionen der Perspektive und Photogrammetrie by Hermann Guido Hauck (1845 — 1905) In the field of computer vision, any two images of the same planar surface in space are related by a homography (assuming a pinhole ...

  8. Bundle adjustment - Wikipedia

    en.wikipedia.org/wiki/Bundle_adjustment

    In photogrammetry and computer stereo vision, bundle adjustment is simultaneous refining of the 3D coordinates describing the scene geometry, the parameters of the relative motion, and the optical characteristics of the camera(s) employed to acquire the images, given a set of images depicting a number of 3D points from different viewpoints.

  9. Free-form deformation - Wikipedia

    en.wikipedia.org/wiki/Free-form_deformation

    In computer graphics, free-form deformation (FFD) is a geometric technique used to model simple deformations of rigid objects. It is based on the idea of enclosing an object within a cube or another hull object, and transforming the object within the hull as the hull is deformed.