Search results
Results from the WOW.Com Content Network
In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/ x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a / b is b / a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one ...
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
The multiplicative inverse (reciprocal) of the square root of two is a widely used constant, with the decimal value: [20] 0.70710 67811 86547 52440 08443 62104 84903 92848 35937 68847... It is often encountered in geometry and trigonometry because the unit vector, which makes a 45° angle with the axes in a plane, has the coordinates
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
The mean reciprocal rank is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness. The reciprocal rank of a query response is the multiplicative inverse of the rank of the first correct answer: 1 for first place, 1 ⁄ 2 for second place, 1 ⁄ 3 ...
Extended Euclidean algorithm also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when a and b are coprime. With that provision, x is the modular multiplicative inverse of a ...
The multiplicative inverse x ≡ a −1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm. In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p; thus a multiplicative inverse exists for all a that is not congruent to zero ...
The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ( y , x ) . {\displaystyle \arctan(y,x).}