enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Receiver operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Receiver_operating...

    A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the performance of a binary classifier model (can be used for multi class classification as well) at varying threshold values. The ROC curve is the plot of the true positive rate (TPR) against the false positive rate (FPR) at each threshold setting.

  3. Receiver Operating Characteristic Curve Explorer and Tester

    en.wikipedia.org/wiki/Receiver_Operating...

    An image of different ROC curves is shown in Figure 1. ROC curves provide a simple visual method for one to determine the boundary limit (or the separation threshold) of a biomarker or a combination of biomarkers for the optimal combination of sensitivity and specificity. The AUC (area under the curve) of the ROC curve reflects the overall ...

  4. Somers' D - Wikipedia

    en.wikipedia.org/wiki/Somers'_D

    In statistics, Somers’ D, sometimes incorrectly referred to as Somer’s D, is a measure of ordinal association between two possibly dependent random variables X and Y. Somers’ D takes values between when all pairs of the variables disagree and when all pairs of the variables agree. Somers’ D is named after Robert H. Somers, who proposed ...

  5. Youden's J statistic - Wikipedia

    en.wikipedia.org/wiki/Youden's_J_statistic

    Youden's index is often used in conjunction with receiver operating characteristic (ROC) analysis. [3] The index is defined for all points of an ROC curve, and the maximum value of the index may be used as a criterion for selecting the optimum cut-off point when a diagnostic test gives a numeric rather than a dichotomous result.

  6. Partial Area Under the ROC Curve - Wikipedia

    en.wikipedia.org/wiki/Partial_Area_Under_the_ROC...

    The Partial Area Under the ROC Curve (pAUC) is a metric for the performance of binary classifier. It is computed based on the receiver operating characteristic (ROC) curve that illustrates the diagnostic ability of a given binary classifier system as its discrimination threshold is varied. The ROC curve is created by plotting the true positive ...

  7. Total operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Total_operating_characteristic

    It is common to report the area under the curve (AUC) to summarize a TOC or ROC curve. However, condensing diagnostic ability into a single number fails to appreciate the shape of the curve. The following three TOC curves are TOC curves that have an AUC of 0.75 but have different shapes. [citation needed]

  8. Mann–Whitney U test - Wikipedia

    en.wikipedia.org/wiki/Mann–Whitney_U_test

    The U statistic is related to the area under the receiver operating characteristic curve : [8] A U C 1 = U 1 n 1 n 2 {\displaystyle \mathrm {AUC} _{1}={U_{1} \over n_{1}n_{2}}} Note that this is the same definition as the common language effect size , i.e. the probability that a classifier will rank a randomly chosen instance from the first ...

  9. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Since in linear regression it is possible to directly compute the factor (n − p − 1)/(n + p + 1) by which the training MSE underestimates the validation MSE under the assumption that the model specification is valid, cross-validation can be used for checking whether the model has been overfitted, in which case the MSE in the validation set ...