enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    While in a non-rotating black hole the singularity occurs at a single point in the model coordinates, called a "point singularity", in a rotating black hole, also known as a Kerr black hole, the singularity occurs on a ring (a circular line), known as a "ring singularity". Such a singularity may also theoretically become a wormhole. [18]

  3. Penrose–Hawking singularity theorems - Wikipedia

    en.wikipedia.org/wiki/Penrose–Hawking...

    The singularity at the center of a Schwarzschild black hole is an example of a strong singularity. Space-like singularities are a feature of non-rotating uncharged black holes as described by the Schwarzschild metric , while time-like singularities are those that occur in charged or rotating black hole exact solutions.

  4. Naked singularity - Wikipedia

    en.wikipedia.org/wiki/Naked_singularity

    Naked singularity. In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon. When there exists at least one causal geodesic that, in the future, extends to an observer either at infinity or to an observer comoving with the collapsing cloud, and in the past terminates at the gravitational ...

  5. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  6. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German ...

  7. Oppenheimer–Snyder model - Wikipedia

    en.wikipedia.org/wiki/Oppenheimer–Snyder_model

    v. t. e. In general relativity, the Oppenheimer–Snyder model is a solution to the Einstein field equations based on the Schwarzschild metric describing the collapse of an object of extreme mass into a black hole. [1] It is named after physicists J. Robert Oppenheimer and Hartland Snyder, who published it in 1939. [2]

  8. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]

  9. Rotating black hole - Wikipedia

    en.wikipedia.org/wiki/Rotating_black_hole

    A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (Sun), galaxies, black holes – spin. [1][2][3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such.