Search results
Results from the WOW.Com Content Network
The plane has two dimensions because the length of a rectangle is independent of its width. In the technical language of linear algebra, the plane is two-dimensional because every point in the plane can be described by a linear combination of two independent vectors.
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [8] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
Aside from the Orthographic, six standard principal views (Front; Right Side; Left Side; Top; Bottom; Rear), descriptive geometry strives to yield four basic solution views: the true length of a line (i.e., full size, not foreshortened), the point view (end view) of a line, the true shape of a plane (i.e., full size to scale, or not ...
A line can lie in a given plane, intersect that plane in a unique point, or be parallel to the plane. In the last case, there will be lines in the plane that are parallel to the given line. A hyperplane is a subspace of one dimension less than the dimension of the full space. The hyperplanes of a three-dimensional space are the two-dimensional ...
Thus, the red plane shows the points with x = 1, the blue plane shows the points with z = 1, and the yellow plane shows the points with y = −1. The three surfaces intersect at the point P (shown as a black sphere) with the Cartesian coordinates (1, −1, 1).
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
A two-dimensional complex space – such as the two-dimensional complex coordinate space, the complex projective plane, or a complex surface – has two complex dimensions, which can alternately be represented using four real dimensions. A two-dimensional lattice is an infinite grid of points which can be represented using integer coordinates.
By rotating the cube by 45° on the x-axis, the point (1, 1, 1) will therefore become (1, 0, √ 2) as depicted in the diagram. The second rotation aims to bring the same point on the positive z -axis and so needs to perform a rotation of value equal to the arctangent of 1 ⁄ √ 2 which is approximately 35.264°.