Search results
Results from the WOW.Com Content Network
By rotating the cube by 45° on the x-axis, the point (1, 1, 1) will therefore become (1, 0, √ 2) as depicted in the diagram. The second rotation aims to bring the same point on the positive z -axis and so needs to perform a rotation of value equal to the arctangent of 1 ⁄ √ 2 which is approximately 35.264°.
A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R:
The elevation is the signed angle from the x-y reference plane to the radial line segment OP, where positive angles are designated as upward, towards the zenith reference. Elevation is 90 degrees (= π / 2 radians) minus inclination. Thus, if the inclination is 60 degrees (= π / 3 radians), then the elevation is 30 degrees ...
Thus, the red plane shows the points with x = 1, the blue plane shows the points with z = 1, and the yellow plane shows the points with y = −1. The three surfaces intersect at the point P (shown as a black sphere) with the Cartesian coordinates (1, −1, 1).
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [8] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
For example, lines traced from the eye point at 45° to the picture plane intersect the latter along a circle whose radius is the distance of the eye point from the plane, thus tracing that circle aids the construction of all the vanishing points of 45° lines; in particular, the intersection of that circle with the horizon line consists of two ...
Points in the first plane rotate through α, while points in the second plane rotate through β. All other points rotate through an angle between α and β, so in a sense they together determine the amount of rotation. For a general double rotation the planes of rotation and angles are unique, and given a general rotation they can be calculated.