enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). [2][3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Gravitational field strength within the Earth Gravity field near the surface of the Earth – an object is shown accelerating toward the surface If the bodies in question have spatial extent (as opposed to being point masses), then the gravitational force between them is calculated by summing the contributions of the notional point masses that ...

  4. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe. Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).

  5. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    e. General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime. By the beginning of the 20th century, Newton's law of universal gravitation had been accepted for more than two ...

  6. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    An object that orbits the Sun more closely than Earth would typically have a shorter orbital period than Earth, but that ignores the effect of Earth's gravitational pull. If the object is directly between Earth and the Sun, then Earth's gravity counteracts some of the Sun's pull on the object, increasing the object's orbital period. The closer ...

  7. Findings by dark energy researchers back Einstein's ... - AOL

    www.aol.com/news/findings-dark-energy...

    This structure results from the gravitational pull of matter throughout the cosmos. ... planets, gas, dust and all the familiar stuff on Earth, including people and popcorn - as well as dark ...

  8. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For an object of mass the energy required to escape the Earth's gravitational field is GMm / r, a function of the object's mass (where r is radius of the Earth, nominally 6,371 kilometres (3,959 mi), G is the gravitational constant, and M is the mass of the Earth, M = 5.9736 × 10 24 kg).

  9. Earth may have had a Saturn-like ring over 400 million years ...

    www.aol.com/news/earth-may-had-saturn-ring...

    A large asteroid broken apart by Earth's gravitational pull could have formed a Saturn-like ring around the planet about 466 million years ago, a new study found.