Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
The Lorentz factor ... is the Lorentz factor. This formula represents a passive transformation, as it describes how the coordinates of the measured quantity changes ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
The Lorentz–Lorenz equation is similar to the Clausius–Mossotti relation, except that it relates the refractive index (rather than the dielectric constant) of a substance to its polarizability. The Lorentz–Lorenz equation is named after the Danish mathematician and scientist Ludvig Lorenz , who published it in 1869, and the Dutch ...
Replacing the Lorentz factor in the original formula leads to the relation = / In this equation both and are measured parallel to the object's line of movement. For the observer in relative movement, the length of the object is measured by subtracting the simultaneously measured distances of both ends of the object.
Lorentz factor as a function of speed (in natural units where c = 1). Notice that for small speeds (as v tends to zero), γ is approximately 1. In addition to the light clock used above, the formula for time dilation can be more generally derived from the temporal part of the Lorentz transformation. [28]
In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates and ′ of the Lorentz transformation with respect to and ′, from which the transformation of three-velocity (also called velocity-addition formula) between and ′ follows, and eventually by another differentiation with respect to and ′ the transformation of three-acceleration ...