Search results
Results from the WOW.Com Content Network
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element.
In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V {\\displaystyle V} is written as V ∗ {\\displaystyle V^{*}} . It is widely used for regular expressions , which is the context in which it was introduced by Stephen Kleene to characterize certain automata , where it means ...
This monoid is denoted Σ ∗ and is called the free monoid over Σ. It is not commutative if Σ has at least two elements. Given any monoid M, the opposite monoid M op has the same carrier set and identity element as M, and its operation is defined by x • op y = y • x. Any commutative monoid is the opposite monoid of itself.
Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.
Associated with any semiautomaton is a monoid called the characteristic monoid, input monoid, transition monoid or transition system of the semiautomaton, which acts on the set of states Q. This may be viewed either as an action of the free monoid of strings in the input alphabet Σ, or as the induced transformation semigroup of Q .
In mathematics and computer science, trace theory aims to provide a concrete mathematical underpinning for the study of concurrent computation and process calculi.The underpinning is provided by an algebraic definition of the free partially commutative monoid or trace monoid, or equivalently, the history monoid, which provides a concrete algebraic foundation, analogous to the way that the free ...
Gen Alpha have their own grasp on vocabulary that elder generations may call "sus," but they would likely consider it "sigma." The age group is marked by those born after 2010, following Gen Z ...
A simpler example are the free monoids. The free monoid on a set X, is the monoid of all finite strings using X as alphabet, with operation concatenation of strings. The identity is the empty string. In essence, the free monoid is simply the set of all words, with no equivalence relations imposed.